Part Number Hot Search : 
LU2905Z GM7885 60001 2SK663H LA507 LT1212I JHV368 BZT52B30
Product Description
Full Text Search
 

To Download HAT3010R Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 To all our customers
Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp.
The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself. Renesas Technology Home Page: http://www.renesas.com
Renesas Technology Corp. Customer Support Dept. April 1, 2003
Cautions
Keep safety first in your circuit designs! 1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party. 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.
HAT3010R
Silicon N/P Channel Power MOS FET High Speed Power Switching
ADE-208-1402H (Z) 9th. Edition Aug. 2002 Features
* Low on-resistance * Capable of 4.5 V gate drive * High density mounting
Outline
SOP-8
8 5 76
3 12 78 DD 56 DD
4
2 G
4 G
S1
S3
1, 3 Source 2, 4 Gate 5, 6, 7, 8 Drain
Nch
Pch
HAT3010R
Absolute Maximum Ratings
(Ta = 25C)
Item Symbol Ratings Nch Drain to source voltage Gate to source voltage Drain current Drain peak current Body-drain diode reverse drain current Channel dissipation Channel dissipation Channel temperature Storage temperature VDSS VGSS ID ID(pulse) IDR Pch Pch Tch Tstg
Note2 Note3 Note1
Unit Pch -60 20 -5 -40 -5 2 3 150 -55 to +150 V V A A A W W C C
60 20 6 48 6 2 3 150 -55 to +150
Notes: 1. PW 10 s, duty cycle 1 % 2. 1 Drive operation ; When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW 10 s 3. 2 Drive operation ; When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW 10 s
Rev.8, Aug. 2002, page 2 of 14
HAT3010R
Electrical Characteristics (Ta = 25C)
* N Channel
Item Symbol Min 60 20 -- -- 1.0 -- -- 7 -- -- -- -- -- -- -- -- -- Typ -- -- -- -- -- 25 32 11 1050 150 90 15 15 55 10 0.85 50 Max -- -- 10 1 2.5 32 45 -- -- -- -- -- -- -- -- 1.10 -- Unit V V A A V m m S pF pF pF ns ns ns ns V ns Test Conditions ID = 10 mA, VGS = 0 IG = 100 A, VDS = 0 VGS = 16 V, VDS = 0 VDS = 60 V, VGS = 0 VDS = 10 V, I D = 1 mA ID = 3 A, VGS = 10 V ID = 3 A, VDS = 10 V VDS = 10 V VGS = 0 f = 1 MHz VGS = 10 V, ID = 3 A VDD 30 V RL = 10 Rg = 4.7 IF = 6 A, VGS = 0
Note4 Note4 Note4
Drain to source breakdown voltage V(BR)DSS Gate to source breakdown voltage Gate to source leak current Zero gate voltage drain current Gate to source cutoff voltage Static drain to source on state resistance Forward transfer admittance Input capacitance Output capacitance Reverse transfer capacitance Turn-on delay time Rise time Turn-off delay time Fall time Body-drain diode forward voltage Body-drain diode reverse recovery time Notes: 4. Pulse test V(BR)GSS IGSS IDSS VGS(off) RDS(on) RDS(on) |yfs| Ciss Coss Crss td(on) tr td(off) tf VDF trr
ID = 3 A, VGS = 4.5 V
Note4
IF =6 A, VGS = 0 diF/ dt =100 A/s
Rev.8, Aug. 2002, page 3 of 14
HAT3010R
* P Channel
Item Drain to source breakdown voltage Gate to source breakdown voltage Gate to source leak current Zero gate voltage drain current Gate to source cutoff voltage Static drain to source on state resistance Forward transfer admittance Input capacitance Output capacitance Reverse transfer capacitance Turn-on delay time Rise time Turn-off delay time Fall time Symbol Min V(BR)DSS V(BR)GSS IGSS IDSS VGS(off) RDS(on) RDS(on) |yfs| Ciss Coss Crss td(on) tr td(off) tf trr -60 20 -- -- -1.0 -- -- 3 -- -- -- -- -- -- -- -- -- Typ -- -- -- -- -- 60 90 5 1350 135 85 20 15 55 10 -0.85 50 Max -- -- 10 -1 -2.5 76 130 -- -- -- -- -- -- -- -- -1.10 -- Unit V V A A V m m S pF pF pF ns ns ns ns V ns Test Conditions ID = -10 mA, VGS = 0 IG = 100 A, VDS = 0 VGS = 16 V, VDS = 0 VDS = -60 V, VGS = 0 VDS = -10 V, I D = -1 mA ID = -2.5 A, VGS = -10 V ID = -2.5 A, VDS = -10 V VDS = -10 V VGS = 0 f = 1 MHz VGS = -10 V, ID = -2.5 A VDD -30 V RL = 12 Rg = 4.7 IF = -5 A, VGS = 0 IF = -5 A, VGS = 0 diF/ dt = 100 A/s
Note5 Note5 Note5
ID = -2.5 A, VGS = - 4.5 V
Note5
Body-drain diode forward voltage VDF Body-drain diode reverse recovery time Notes: 5. Pulse test
Rev.8, Aug. 2002, page 4 of 14
HAT3010R
Main Charactristice
* N Channel
Maximum Safe Operation Area 10 s 10 0 s PW 1 ms =1 0m DC s
Op era tio n( PW
Typical Output Characteristics 10 10 V 4V 3V
100 30
I D (A)
3 1 0.3
I D (A) Drain Current
10
8
Drain Current
6
< 1 ote 0.1 Operation in 0s 5 ) 0.03 this area is limited by R DS(on) 0.01 Ta = 25C 0.003 1 shot Pulse 0.001 30 100 0.1 0.3 1 3 10 Drain to Source Voltage V DS (V)
N
4
Pulse Test
2
2.5 V VGS = 2 V
0
2 4 6 Drain to Source Voltage
8 10 V DS (V)
Note 5 : When using the glass epoxy board (FR4 40 x 40 x 1.6 mm)
Typical Transfer Characteristics
Drain to Source Saturation Voltage vs. Gate to Source Voltage
Drain to Source Saturation Voltage V DS(on) (mV)
10 V DS = 10 V Pulse Test
300 Pulse Test
(A)
8
ID
200 ID=5A 100 2A 1A 0 15 5 10 20 Gate to Source Voltage V GS (V)
6
Drain Current
4 Tc = 75C 2 -25C 0 1 2 3 Gate to Source Voltage 4 V GS (V) 5 25C
Rev.8, Aug. 2002, page 5 of 14
HAT3010R
Static Drain to Source on State Resistance vs. Drain Current 1.0 Pulse Test 0.5 0.2 0.1 VGS = -4.5 V Static Drain to Source on State Resistance vs. Temperature 0.10 Pulse Test 0.08 1, 2 A 0.06 V GS = 4.5 V 1, 2, 5 A 0.02 10 V 0 -40 0 40 80 120 160 Case Temperature Tc (C) ID=5A
Static Drain to Source on State Resistance R DS(on) ( )
Drain to Source On State Resistance R DS(on) (m )
0.05
0.04
0.02 0.01 1
-10 V 10 3 Drain Current 30 I D (A) 100
Forward Transfer Admittance |yfs| (S)
50 20 10 5 2 1 0.5 0.1
Forward Transfer Admittance vs. Drain Current
Body-Drain Diode Reverse Recovery Time 1000
Reverse Recovery Time trr (ns)
500
di / dt = 100 A / s V GS = 0, Ta = 25C
Tc = -25C 25C 75C
200 100 50
V DS = 10 V Pulse Test 0.3 1 3 10 30 100
20 10 0.1
Drain Current I D (A)
0.3 1 3 10 30 100 Reverse Drain Current I DR (A)
Rev.8, Aug. 2002, page 6 of 14
HAT3010R
Typical Capacitance vs. Drain to Source Voltage
V DS (V)
Dynamic Input Characteristics
V GS (V) Gate to Source Voltage
5000
Capacitance C (pF)
100
ID=6A V DD = 50 V 25 V 10 V V DS
20
2000 1000 500 200 100 50 Crss 20 10 0 VGS = 0 f = 1 MHz 10 20 30 40 50 Drain to Source Voltage V DS (V) Coss Ciss
80
16 V GS 12
Drain to Source Voltage
60
40
8
20
V DD = 50 V 25 V 10 V 8 16 24 32 Gate Charge Qg (nc)
4 0 40
0
Switching Characteristics 1000
Reverse Drain Current I DR (A)
Reverse Drain Current vs. Source to Drain Voltage 10 Pulse Test 8 10 V 6 5V
Switching Time t (ns)
300 100 30 10 3 1 0.1 t d(off) tr t d(on) tf V GS = 10 V, V DD = 30 V PW = 5 s, duty < 1 % 0.3 1 3 10 30 Drain Current I D (A) 100
4
V GS = 0, -5 V
2
0
0.4 0.8 1.2 Source to Drain Voltage
1.6 2.0 V SD (V)
Rev.8, Aug. 2002, page 7 of 14
HAT3010R
* P Channel
Maximum Safe Operation Area 10 s 10 0 s PW 1 ms =1 0m DC s
Op era tio n( PW
Typical Output Characteristics -10 -10 V Pulse Test
-100 -30
I D (A)
I D (A)
-10 -3 -1 -0.3
-8
-6 V -4.5 V
-3.5 V
Drain Current
-6
< 1 ote -0.1 Operation in 0s 5 ) this area is -0.03 limited by R DS(on) -0.01 Ta = 25C -0.003 1 shot Pulse -0.001 -0.1 -0.3 -1 -3 -10 -30 -100 Drain to Source Voltage V DS (V)
N
Drain Current
-4
-2 VGS = -2.5 V 0 -2 -4 -6 Drain to Source Voltage -8 -10 V DS (V)
Note 5 : When using the glass epoxy board (FR4 40 x 40 x 1.6 mm)
Typical Transfer Characteristics -10 V DS = -10 V Pulse Test -8 -1
Drain to Source Saturation Voltage vs. Gate to Source Voltage
Drain to Source Saturation Voltage V DS(on) (V)
Pulse Test -0.8
ID
(A)
-6
-0.6
Drain Current
-4
-0.4 I D = -5 A -0.2 0 -15 -5 -10 -20 Gate to Source Voltage V GS (V) -2 A -1 A
-2 Tc = 75C 0 25C -25C -1 -2 -3 -4 -5 Gate to Source Voltage V GS (V)
Rev.8, Aug. 2002, page 8 of 14
HAT3010R
Static Drain to Source on State Resistance vs. Drain Current Static Drain to Source on State Resistance vs. Temperature 0.25 Pulse Test 0.20 -5 A I D = -1, -2 A V GS = -4.5 V -5 A -1, -2 A
Drain to Source On State Resistance R DS(on) (m )
1.0 Pulse Test 0.5 0.2 0.1 VGS = -4.5 V
0.05
-10 V
0.02 0.01 -1
Static Drain to Source on State Resistance R DS(on) ( )
0.15
0.10
0.05 0 -40
-10 V
-3
-10 Drain Current
-30 I D (A)
-100
0 40 80 120 160 Case Temperature Tc (C)
Forward Transfer Admittance |yfs| (S)
50 20 10 5 2 1 0.5 -0.1
Forward Transfer Admittance vs. Drain Current
Body-Drain Diode Reverse Recovery Time 1000
Reverse Recovery Time trr (ns)
500
di / dt = 100 A / s V GS = 0, Ta = 25C
200 100 50
Tc = -25C 25C 75C
V DS = -10 V Pulse Test -0.3 -1 -3 -10 -30 -100
20 10 -0.1
Drain Current I D (A)
-0.3 -1 -3 -10 -30 -100 Reverse Drain Current I DR (A)
Rev.8, Aug. 2002, page 9 of 14
HAT3010R
Typical Capacitance vs. Drain to Source Voltage
Drain to Source Voltage DSV DS (V)
Dynamic Input Characteristics
V GS (V) Gate to Source Voltage
5000
Capacitance C (pF)
0
2000 1000 500 200 100 50 Crss 20 10 0 VGS = 0 f = 1 MHz -10 -20 -30 -40 -50 Drain to Source Voltage V DS (V) Coss Ciss
-20
V DD= -10 V -25 V -50 V I D = -5 A
0
-4
-40 V DS V DD = -10 V -25 V -50 V V GS
-8
-60
-12
-80
-16 -20 40
-100
0
8
16 24 32 Gate Charge Qg (nc)
Switching Characteristics 1000
Reverse Drain Current I DR (A)
Reverse Drain Current vs. Source to Drain Voltage -10 Pulse Test -8 -10 V -6 -5 V V GS = 0, 5 V
Switching Time t (ns)
300 100 30 10 3 1 -0.1 tf V GS = -10 V, VDD = -30 V PW = 5 s, duty < 1 % -0.3 -1 -3 -10 -30 Drain Current I D (A) -100 t d(off) tr t d(on)
-4
-2
0
-0.4 -0.8 -1.2 Source to Drain Voltage
-1.6 -2.0 V SD (V)
Rev.8, Aug. 2002, page 10 of 14
HAT3010R
Power vs. Temperature Derating 4.0
Pch (W)
Test Condition : When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW < 10 s 3.0
Channel Dissipation
2.0
1
2 Dr ive Op at er
1.0
Dr ive
Op e
ion
ra t
ion
0
50
100
150 Ta (C)
200
Ambient Temperature
Rev.8, Aug. 2002, page 11 of 14
HAT3010R
Normalized Transient Thermal Impedance vs. Pulse Width (1 Drive Operation) 10
Normalized Transient Thermal Impedance s (t)
D=1 1
0.1
0.05
0.02
0.01
0.01
e uls tp ho 1s
ch - f(t) = s (t) x ch - f ch - f = 125C/W, Ta = 25C When using the glass epoxy board (FR4 40x40x1.6 mm)
PDM PW T
D=
0.001
PW T
0.0001 10
100
1m
10 m
100 m 1 10 Pulse Width PW (S)
100
1000
10000
Normalized Transient Thermal Impedance vs. Pulse Width (2 Drive Operation) 10
Normalized Transient Thermal Impedance s (t)
1
D=1 0.5
0.2
0.1
0.1 0.05
0.02
0.01
uls e
0.01
ch - f(t) = s (t) x ch - f ch - f = 166C/W, Ta = 25C When using the glass epoxy board (FR4 40x40x1.6 mm)
PDM PW T
0.001
1s
tp ho
D=
PW T
0.0001 10
100
1m
10 m
100 m 1 10 Pulse Width PW (S)
100
1000
10000
Rev.8, Aug. 2002, page 12 of 14
HAT3010R
Package Dimensions
As of January, 2002
Unit: mm
4.90 5.3 Max 5 8
1
4
3.95
*0.22 0.03 0.20 0.03
1.75 Max
0.75 Max
6.10 - 0.30
+ 0.10
1.08 0 - 8
+ 0.67
0.14 - 0.04
+ 0.11
1.27
0.60 - 0.20
*0.42 0.08 0.40 0.06
0.15 0.25 M
*Dimension including the plating thickness Base material dimension Hitachi Code JEDEC JEITA Mass (reference value) FP-8DA Conforms -- 0.085 g
Rev.8, Aug. 2002, page 13 of 14
HAT3010R
Disclaimer
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.
Sales Offices
Hitachi, Ltd.
Semiconductor & Integrated Circuits Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: (03) 3270-2111 Fax: (03) 3270-5109
URL
http://www.hitachisemiconductor.com/
For further information write to:
Hitachi Semiconductor (America) Inc. 179 East Tasman Drive San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe Ltd. Electronic Components Group Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Europe GmbH Electronic Components Group Dornacher Str 3 D-85622 Feldkirchen Postfach 201, D-85619 Feldkirchen Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00 Singapore 049318 Tel : <65>-6538-6533/6538-8577 Fax : <65>-6538-6933/6538-3877 URL : http://semiconductor.hitachi.com.sg Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road Hung-Kuo Building Taipei (105), Taiwan Tel : <886>-(2)-2718-3666 Fax : <886>-(2)-2718-8180 Telex : 23222 HAS-TP URL : http://semiconductor.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon Hong Kong Tel : <852>-2735-9218 Fax : <852>-2730-0281 URL : http://semiconductor.hitachi.com.hk
Copyright (c) Hitachi, Ltd., 2002. All rights reserved. Printed in Japan.
Colophon 7.0
Rev.8, Aug. 2002, page 14 of 14


▲Up To Search▲   

 
Price & Availability of HAT3010R

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X